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A PRELIMINARY STUDY ON THE VAPOR/MIST PHASE LUBRICATION
OF A SPUR GEARBOX
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and

Robert F. Handschuh
U.S. Army Research Laboratory
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SUMMARY

Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving
ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a
rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating
over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work,
however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication
failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formula-
tion was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then
used to vapor/mist phase lubricate a spur gearbox in a preliminary study.

INTRODUCTION

Klaus, Lai, and Graham (refs. 1 and 2), laid the foundation for high temperature vapor phase lubrication studies
when they used tributyl phosphate (TBP) and tricresyl phosphate (TCP) vapors, delivered in a carrier gas, to form
deposit films on metal surfaces and to lubricate a four-ball wear tester. Since then, a number of vapor phase lubrica-
tion studies, using organophosphates, have been reported. Vapor phase lubrication research can be divided into
deposition studies and dynamic friction and wear studies.

In deposition studies, organophosphate molecules are impinged at hot metal or ceramic surfaces and subsequent
surface reactions are analyzed. The results from these deposition studies indicated that lubricating films formed only
on metal surfaces containing certain active metal sites such as iron or copper (ref. 3). Lubricating films did not form
on SiC (ref. 4), nickel (ref. 3) or aluminum (ref. 5) surfaces.

Dynamic friction and wear studies have been conducted using a four ball wear tester (ref. 2), a pure sliding re-
ciprocating tester (ref. 6), a ball-on-rod tester (ref. 7) and a gas turbine engine (ref. 8). In general, successful results
were reported for vapor phase lubrication of ferrous material such as cast iron, M50 steel, and 1018 steel specimens.
Vapor phase lubrication of ceramics and a Ni-based superalloy were unsuccessful. The work conducted by Forster
et al. (ref. 8) also revealed that lubricant delivery as a mist to rubbing surfaces worked as well as vapor delivery,
prompting the phrase “vapor/mist phase lubrication.”

The experimental results indicate organophosphates work well with certain ferrous materials due to an initial,
rapid formation of a predominant iron phosphate film. This is followed by the formation and growth of a pyrophos-
phate-type film over the iron phosphate via cationic diffusion. As long as iron is present at a wearing surface the
vapor phase lubrication method using organophosphates works well. Evidence, however, has been reported (ref. 9)
that continued organophosphate interaction with ferrous bearing materials can lead to depletion of surface iron and
to eventual lubrication failure.

If vapor/mist phase lubrication is to work for prolonged periods of time then the depletion of surface iron must
be circumvented. A deposition study was undertaken to test the capability of a new organophosphate solution,
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containing an iron additive, to form iron phosphate on the surface of aluminum reasoning that if an iron phosphate
film can be formed on an aluminum surface then it may be formed on most other surfaces. A preliminary dynamic
test was then undertaken testing the new organophosphate solution, as a vapor/mist phase lubricant, in a spur
gearbox.

EXPERIMENTAL

Deposition Studies

An alcohol solution was prepared by dissolving 1 g of an aryl phosphate ester into 100 ml of ethanol. A second
solution was prepared by dissolving 1 g of the same phosphate ester, and 1 gram of ferric acetylacetonate into
100 ml of ethanol (ref. 10). Aluminum foil samples (1×1 cm) were ultrasonically cleaned in an acetone bath for
10 min and dried in air. One foil sample was dipped into the phosphate/ethanol solution for 1 min, withdrawn from
the solution and the ethanol allowed to evaporate from the foil surface. The foil was then inserted into a preheated
oven (300 °C) for 2 min. This procedure was repeated for a second foil sample dipped into the phosphate/ferric
acetylacetonate/ethanol solution. The foil samples were analyzed using X-ray photoelectron spectroscopy (XPS).
The XPS spectra were acquired on a commercial spectrometer operated at 100 eV pass energy. The sample surface
was perpendicular to the spectrometer axis, the spectrometer acceptance angle was ±12 degrees, and the area of
analysis was 2×5 mm. Non-monochromatized, Al K-alpha x-rays were used. The areas of peaks in the spectra were
calculated by subtracting a Shirley background, and the composition of the specimen surface was calculated from
the areas by applying sensitivity factors supplied by the instrument manufacturer. Depth profiling of surface films
was not attempted in this study.

Spur Gear Test Facility

The facility (ref. 11) used to conduct the vapor/mist phase lubrication tests is shown in figure 1. It operates in a
closed-loop arrangement where the drive motor only needs to supply the power to overcome the frictional losses of
the system. The system loop is loaded through a torque actuator contained internal to one of the slave gears. High
pressure oil, the same oil used to lubricate the gears under normal operation, is supplied to the rotating shaft via a
seal assembly. The level of pressure applied to the torque actuator is related to the level of contact stress attained.

The test gears are aligned such that only one half of the face width is loaded. Using the test hardware in this
manner can permit four fatigue tests to be run on one pair of gears provided tooth breakage does not occur. The
facility can operate with the gears transmitting 75 kW (100 hp) at rotational speeds equal to 10 000 rpm. These
maximum test rig conditions will induce a Hertzian contact stress maximum of 1.7 GPa. The test gears were made
from AISI 9310 gear steel. Test gear dimensional information is contained in table I.

The existing spur gearbox was modified to accommodate a misting unit (fig. 2a). A photograph of the test
arrangement is shown in figure 2(b). The mister was filled with the aryl phosphate ester and compressed air was
used to deliver the ester to the spur gearbox as a fine mist or fog. The spur gears were then rotated initially at
2400 rpm and 0.5 GPa contact stress for 5 min. The gearbox was then disassembled and the gears removed and
cleaned for visual inspection. After inspection, the gears were assembled back in the gearbox and rotated at a higher
speed and load for another five minutes before stopping the test run for another visual inspection. This procedure
was repeated several more times until a final run was made at 7000 rpm at 1.1 GPa contact stress.

A 1 percent (by weight) solution of ferric acetylacetonate in the phosphate ester was prepared and loaded into
the mister unit. Subsequent lubrication tests were performed  using different sets of gears, again gradually increasing
the gear speed and load capacity. The gearbox was modified to allow insertion of a thermocouple to monitor the
turbulent air temperature next to one of the gears (fig. 3).

RESULTS AND DISCUSSION

Deposition Studies

Figure 4 is the XPS spectrum of the heat-treated Al surface which was dipped into the pure phosphate solution.
Oxygen, carbon, and aluminum peaks were identified but not phosphorous. The calculated aluminum-to-oxygen
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ratio, from the XPS spectrum, is 0.60 and the stoichiometric aluminum-to-oxygen ratio for aluminum oxide, Al2O3,
is 0.66. Comparison of these two ratios, along with the XPS spectrum, indicates an aluminum oxide surface with
carbonaceous material over it.

Figure 5 is the XPS spectrum for the heat treated Al surface which was dipped into the ferric/phosphate solu-
tion. Oxygen, carbon, iron and phosphorus peaks were detected but not aluminum. This indicates the presence of a
film thick enough to cover the strongly absorbing aluminum on the foil surface. If only iron phosphate is present
then the phosphorous-to-iron and the phosphorous-to-oxygen ratios, from the XPS spectrum, should be about 1 and
0.25 respectively. The ratios, however, are 0.55 and 0.19 which indicates excess iron and oxygen. This excess iron
and oxygen could be present as iron oxide but further surface analysis is needed to discern the calculated ratios.
Nevertheless, the XPS spectrum indicates a phosphate film, with carbonaceous material, covering the aluminum
surface.

This deposition study revealed the inability of a phosphate film to form on an aluminum surface using only the
pure organophosphate. Either the organophosphate simply evaporated from the surface or it decomposed with subse-
quent evaporation of the decomposition products. This result is not surprising considering a review of phosphate
conversion coatings in the literature (ref. 12). In general, cast irons and low carbon steels are easily phosphated
whereas stainless steels cannot be successfully phosphate coated. The only phosphate easily deposited on aluminum
surfaces is zinc phosphate and only via a process where fluoride ions are present in a phosphating bath. This study,
however, has shown that the presence of ferric acetylacetonate, in the organophosphate, led to the formation of an
iron phosphate film on the aluminum foil. The iron phosphate film on any metal or ceramic surface is crucial for
successful high temperature, vapor/mist phase lubrication.

Spur Gear Studies

The results of the first test, using only pure phosphate ester, are summarized in table II. This run was conducted
in 5 min intervals where, at the end of each interval, the gears were disassembled and visibly examined. No tooth
wear or scratches were observed at the end of the first interval. The speed and load were increased for the second
interval. This time slight scratches on some of the teeth were observed. The speed and load were increased for the
third and fourth intervals with no visible changes to the gear teeth. At the end of the fifth interval, surface scratches
on the gear teeth were more pronounced. No changes were noticed for the sixth interval. For the seventh interval, a
1.1 GPa contact stress was applied to the gears rotating at 7000 rpm. Two minutes elapsed before a sudden increase
in noise was heard and the test stopped. The test chamber was very cloudy as seen through the plexiglass window
covering the test gears. Visual inspection revealed 3 teeth on the driver gear and 9 teeth on the driven gear had se-
verely overheated as noted by the bluish discoloration of the teeth (ref. 13).

The driver gear was continuously sprayed with ethanol for several minutes to remove residual oil. One gear
tooth, randomly selected, was removed and its contact surface analyzed using XPS. Its XPS spectrum, shown in
figure 6, revealed a surface film consisting essentially of carbon and oxygen. A small iron peak was detected along
with a few minor contaminants. No phosphorous was detected.

Because only three sets of spur gears were available for experimentation, it was decided to mist phase lubricate
a new set with the 1 percent ferric/phosphate solution. A thermocouple recorded the fling-off air lubricant tempera-
ture near the driven gear. The results of this second test are summarized in table III. The run started with a gear rota-
tion of 2800 rpm, no load on the gears, and an initial temperature of 20 °C. Gear speed or load was increased every
5 min; however, this time the gearbox was stopped for gear inspection only at the end of the sixth interval. The ther-
mocouple measured 38 °C at the end of the first interval. The gear load pressure was increased to apply a contact
stress equal to 0.8 GPa for the second interval and a 50 °C temperature reading was recorded. During the next three
intervals, the speed and load were increased to 7300 rpm and 1.1 GPa contact stress. The temperature increased to
84 °C.

Inspection of the gear teeth at the end of the sixth interval revealed only slight wear scars on the teeth. After
reassembly, the gearbox was started at 7730 rpm and a 1.3 GPa contact stress was applied. This seventh interval ran
for 10 min and the thermocouple held steady at 92 °C. The load was increased to 1.5 GPa contact stress for the
eighth interval where the gearbox ran for 1.5 min until a sudden increase in gear noise and vibration resulted in test
termination. The temperature increased rapidly to 119 °C. Inspection of the gears showed worn teeth but no fatal
damage and the gear teeth were not discolored.

Table IV summarizes the results of the third test, again using the 1 percent ferric/organophosphate solution,
where the position of one of the air/mist jets was changed (fig. 7) to lubricate the gear teeth just before they entered
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the contact zone. This run started with a gear speed of 3000 rpm and 0.8 GPa contact stress. The thermocouple
measured 32 °C after the first (5 min) interval. The speed was increased to 7000 rpm for the second interval and the
temperature reached 57 °C. The load was increased to 1.1 GPa contact stress for the third interval where the tem-
perature rose to 72 °C. The load was increased to 1.3 GPa for the fourth interval where the temperature rose to
85 °C. The gear speed was increased to 10 000 rpm for the fifth interval where the temperature gradually rose to
149 °C and then started to decrease. During the next 7 min, the sixth interval, the temperature dropped and stabilized
at 141 °C. The load was increased to 1.4 GPa for the seventh interval. The temperature increased steadily to 164 °C
when the test was terminated. Gear teeth examination revealed some visible wear but very little surface metal
removal, and no discoloration of the teeth was observed.

After ethanol cleaning, a tooth from the driver gear was removed and its contact surface analyzed using XPS.
The XPS spectrum (fig. 8) revealed a surface film consisting primarily of carbon and oxygen along with amounts of
iron and phosphorus. Minor contaminants were also present.

Unfortunately only three gear runs could be performed at this time. It was deemed, however, that these favor-
able results justified a preliminary report. Keeping in mind that we were lubricating the spur gears with about
0.1 percent of the oil capacity used during normal operation, no catastrophic wear of the gear teeth occurred. The
major differences between the runs were: (1) the blue discoloration of several gear teeth, which occurred only for the
pure organophosphate run, indicating very high gear temperatures, and (2) the presence of iron and phosphorous on
the gear tooth surface, from the last run, using the iron additive.
   Although much work remains to be done—for instance, optimizing the concentration of the iron additive in the
organophosphate, adjusting the flow rates, selecting the best locations for the mist jets—this method can be used
immediately as an emergency back-up system for helicopter transmission gearboxes in the event of oil loss. One or
two liters of the ferric/organophosphate solution can be used as a vapor/mist phase lubricant allowing the pilot
ample time to safely land his craft.

CONCLUSIONS

Deposition studies, using a pure aryl organophosphate on aluminum foil, revealed that a phosphate film did
not form on the foil surface. An iron phosphate film, however, did form on the foil surface using a ferric
acetylacetonate/organophosphate solution. This unique liquid solution provides the means to circumvent iron
depletion on ferrous surfaces vapor/mist phase lubricated with organophospates. It also ensures successful vapor/
mist phase lubrication on nonferrous surfaces. A minute amount of this formulation was used to successfully lubri-
cate a spur gearbox at high speed and load.
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TABLE I.—SPUR GEAR DATA

[Gear tolerance per AGMA class 12.]
Number of teeth ........................................................................................................28
Diametral pitch ..............................................................................................................8
Circular pitch, cm (in.) ....................................0.9975 (0.3927)
Whole depth, cm (in.) ...............................................0.762 (0.300)
Addendum, cm (in.) .......................................................0.318 (0.125)
Chordal tooth thickness ...........................................0.485 (0.191)
    (reference), cm (in.)
Pressure angle, deg .............................................................................................20
Pitch diameter, cm (in.) .........................................8.890 (3.500)
Outside diameter, cm (in.) .................................9.525 (3.750)

TABLE II.—SPUR GEARBOX TEST USING PURE
ORGANOPHOSPHARE

Interval Elapsed
test time,
min during

interval

RPM Gear
contact
stress,
GPa

Observation

1 0 to 5 2400 0.5 No visible wear
2 5 to 10 2700 0.8 Slight scratches on teeth
3 10 to 15 2830 0.8 No change
4 15 to 20 4900 0.8 No change
5 20 to 25 4900 0.9 Surface scratches on teeth
6 25 to 30 7000 0.9 No change
7 30 to 32 7000 1.1 Shut down

TABLE III.—SPUR GEARBOX TEST USING 1 PERCENT
FERRIC/PHOSPHATE FORMULATION

Interval Elapsed
test time,
min during

interval

RPM Gear
contact
stress,
GPa

Temperature,
°C

1 0 to 5 2800 0 38
2 5 to 10 2800 0.8 50
3 10 to 15 4200 0.8 59
4 15 to 20 4200 1.1 67
5 20 to 25 7300 1.1 84
6 25 to 30 7300 1.3 91
7 30 to 40 7730 1.3 92
8 40 to 41.5 7730 1.5 119

TABLE IV.—SPUR GEARBOX TEST USING 1 PERCENT
FERRIC/PHOSPHATE FORMULATION WITH

DIFFERENT JET PLACEMENT
Interval Elapsed

test time,
min during

interval

RPM Gear
contact
stress,
GPa

Temperature,
°C

1 0 to 5 3000 0.8 32
2 5 to 10 7000 0.8 57
3 10 to 15 7000 1.1 72
4 15 to 20 7000 1.3 85
5 20 to 25 10 000 1.3 149
6 25 to 32 10 000 1.3 141
7 32 to 37 10 000 1.4 164
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Figure 1.—NASA Lewis Research Center's gear fatigue test apparatus. (a) Cutaway view.
   (b) Schematic diagram.
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Figure 2b.—Photograph of experimental test arrangement.

Figure 2a.—Vapor/mist phase lubrication system.
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Figure 3.—Spur gearbox showing jet and thermo-
   couple placement. Each gear has twenty eight
   teeth, only a select few shown here.
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Figure 5.—XPS spectrum of heat-treated Al surface dipped into ferric/phosphate solution.
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Figure 6.—XPS spectrum of gear tooth from test conducted using pure phosphate.
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Figure 7.—Spur gearbox showing different jet
   placement.
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Figure 8.—XPS spectrum of gear tooth from test conducted using the ferric/phosphate
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